DVMS Co., Ltd

Ứng dụng Bigdata

Bigdata Solutions | Tư vấn, xây dựng, chuyển giao Bigdata , xây dựng phần mềm Bigdata, xây dựng app Bigdata, xây dựng website Bigdata, giải pháp và dịch vụ liên quan tới Bigdata
  1. Bài chia sẻ của Ths.Bs Nguyễn Thành Danh (Danh Nguyen) - chuyên gia trong lĩnh vực quản lý y tế sau khi tham dự Hội thảo “Big Data trong cải tiến chất lượng y tế” được tổ chức tại Bệnh viện Việt Đức:

    Bùng nỗ digital healthcare, big data trong lĩnh vực y tế đang đến rất gần

  2. Thị trường E-commerce cùng với sự ra đời của những thành quả Cách mạng công nghiệp 4.0 như Artificial Intelligent (trí tuệ nhân tạo AI), Machine Learning (học máy) và đặc biệt là Big Data đã thay đổi một cách chóng mặt từ cách thức tiếp cận khách hàng cho đến cách thức quản lý, phân phối sản phẩm hàng hóa thông qua các webstie, app thông minh,..

    ỨNG DỤNG BIG DATA TRONG LĨNH VỰC E-COMMERCE (PHẦN 1)

  3. Trước tình hình biến động của nền kinh tế và sự phát triển của khoa học công nghệ, để người quản lý có thể đưa ra những quyết định khả thi, hiệu quả thì nguồn dữ liệu đóng vai trò khá quan trọng.

    DỮ LIỆU SƠ CẤP TRONG NGHIÊN CỨU MARKETING

  4. Ở các bài viết trước, chúng tôi đã giới thiệu về khái niệm Chatbot và cách thức vận hành cũng như những phương pháp áp dụng cho quá trình phát triển Chatbot. Ở bài viết lần này, chúng tôi sẽ trình bày các lợi ích của Chatbot đem lại cho khách hàng và các công ty hoạt động kinh doanh.

    TỔNG QUAN VỀ CHATBOT (PHẦN 3): LỢI ÍCH CỦA CHATBOT

  5. Để thu thập các thông tin bệnh nhân các nhà nghiên cứu phải sử dụng đến đơn vị petabyte. Mỗi petabyte dữ liệu tương đương với 1 triệu gigabyte. Công ty Express Scripts, có trụ sở tại St Louis, Missouri, Mỹ, đã thu thập được 22 petabyte dữ liệu y tế từ 83 triệu bệnh nhân, với số lượng dữ liệu này được chuyển đổi thành định dạng MP3, sẽ mất khoảng 44.000 năm để lắng nghe hết số lượng tệp nhạc này.

    Sự ảnh hưởng của “Big data” tới ngành Dược trong tương lai

  6. Trở lại với chủ đề về thống kê, ở phần trước chúng tôi đã giới thiệu đến các bạn các khái niệm về thống kê cũng như lợi ích và ứng dụng của nó, tiếp theo ở phần này, chúng tôi sẽ đề cập đến một mảng kiến thức quan trọng khác đó chính Descriptive statistics (thống kê mô tả)

    TỔNG QUAN VỀ STATISTICS: DESCRIPTIVE STATISTICS (THỐNG KÊ MÔ TẢ)

  7. Dữ liệu khách hàng hay Customer data được coi là tài sản, nguồn thông tin vô giá đối với mọi công ty thuộc nhiều lĩnh vực kinh doanh khác nhau. Việc triển khai các quy trình khai thác, dự án nghiên cứu, phân tích Customer data với mục đích tìm hiểu, nắm bắt mong muốn, nhu cầu thầm kín của khách hàng, và chuyển nó thành những giá trị cụ thể thông qua từng chiến lược, kế hoạch hoạt động chính là chìa khóa cạnh tranh của mỗi tổ chức ngày nay.

    TỔNG QUAN VỀ CUSTOMER DATA (P.1) – DỮ LIỆU KHÁCH HÀNG LÀ GÌ?

  8. Statistics hay thống kê chắc có lẽ không còn xa lạ đối với những ai đang học, nghiên cứu, đang hoạt động, làm việc ở các ngành nghề, lĩnh vực có liên quan đến dữ liệu ví dụ Data analytics, Data science. Statistics được nhiều chuyên gia cho rằng là kiến thức nền tảng, cơ sở để chúng ta có thể bắt đầu tìm hiểu được, học được, trích xuất được những thông tin hữu ích, có giá trị từ bộ dữ liệu.

    TỔNG QUAN VỀ STATISTICS: KHÁI NIỆM VÀ ỨNG DỤNG CỦA THỐNG KÊ

  9. Dữ liệu về xe hơi sản xuất trong các năm gần đây, bao gồm năm sản xuất (year), hãng sản xuất (make), model, trim. Kèm theo tool đọc dữ liệu bằng PHP

  10. Chắc bạn đã một lần từng nghe, hoặc biết đến Chatbot khi đã vô tình bắt gặp nó được thể hiện ở các trang mạng xã hội (social media platform) hay trên các ứng dụng mua sắm trực tuyến (online shopping application). Chatbot hiện đang là công cụ hỗ trợ đắc lực dành cho các công ty, tổ chức trong việc phát triển, duy trì và cải thiện mối quan hệ với khách hàng (customer relationship management).

    TỔNG QUAN VỀ CHATBOT (PHẦN 1) CHATBOT LÀ GÌ?

  11. Như vậy chúng ta đã cùng nhau đi qua 4 phần của series bài viết về thuật toán Decision trees hay còn gọi là thuật toán cây quyết định. Chúng ta đã làm quen với định nghĩa tổng quát, các dạng cây quyết định bao gồm phân 2 nhánh – CART, và nhiều nhánh C4.5 sử dụng các công thức Goodness of Split, Gini Index, Entropy kết hợp với Information Gain, hay Gain Ratio để xây dựng mô hình áp dụng cho biến mục tiêu là biến định tính, và chúng ta cũng tiếp cận qua một số cách thức để tăng độ hiệu quả của mô hình, tránh trường hợp Overfitting hay Underfitting như Stopping rule và Pruning method, và nhìn lại những ưu điểm, khuyết điểm một cách tổng thể về Decision Trees.

    THUẬT TOÁN CÂY QUYẾT ĐỊNH (P.5) REGRESSION TREE VÀ DECISION RULES

  12. Thu thập dữ liệu là một giai đoạn có ý nghĩa vô cùng quan trọng đối với quá trình nghiên cứu các hiện tượng kinh tế xã hội. Tuy nhiên việc thu thập dữ liệu lại thường tốn nhiều thời gian, công sức và chi phí; do đó cần phải nắm chắc các phương pháp thu thập dữ liệu để từ đó chọn ra các phương pháp thích hợp với hiện tượng, làm cơ sở để lập kế hoạch thu thập dữ liệu một cách khoa học, nhằm để đạt được hiệu quả cao nhất của giai đoạn quan trọng này.

    Phương pháp thu thập dữ liệu sơ cấp trong nghiên cứu các hiện tượng kinh tế xã hội

  13. Chủ đề về Big Data tác động đến social media marketing (tiếp thị qua mạng xã hội), mà cung cấp đến các bạn sẽ được chia thành 2 phần

    • Phần 1: Sự “bùng nổ” của social media và xu hướng marketing mới
    • Phần 2: Tác động của Big data đến xu hướng social media marketing

    SỰ “BÙNG NỔ” CỦA SOCIAL MEDIA VÀ XU HƯỚNG MARKETING MỚI

  14. Ở phần trước chúng tôi đã giới thiệu cho các bạn sơ lược về tầm quan trọng của khai thác Big Data trong lĩnh vực ngân hàng (Banking industry) và các ứng dụng đầu tiên như: phân tích thói quen chi tiêu khách hàng, phân khúc khách hàng,...

    ỨNG DỤNG CỦA BIG DATA TRONG LĨNH VỰC NGÂN HÀNG (PHẦN 2)

  15. Tìm hiểu về mối quan hệ giữa Big Data và Cloud

    Việc tận dụng và khai thác Big Data để phục vụ cho mục đích cải thiện hiệu quả hoạt động kinh doanh ở mỗi công ty ngày càng trở nên quan trọng và đem lại lợi ích cực kỳ to lớn. Big Data được xem là tài sản cực kỳ chủ lực không thuộc tài chính và nhân lực, nên tài nguyên này cũng cần được quản lý và sử dụng đúng cách.

    BIG DATA VÀ CLOUD – SỰ KẾT HỢP HOÀN HẢO

  16. Trong ngành công nghiệp du lịch, dữ liệu lớn (hay còn gọi là Big data) là một trong những khái niệm quan trọng nhất để nắm bắt bởi hầu hết các doanh nghiệp khác đã sử dụng nó và gặt hái những phần thưởng.

    5 bất ngờ mà dữ liệu lớn (Big Data) mang lại trong ngành du lịch

  17. Có nhiều phương pháp khác nhau để thu thập dữ liệu. Người ta có thể chia thành hai loại.

    Đó là phương pháp bàn giấy phương pháp hiện trường.

    Các phương pháp thu thập dữ liệu

  18. Quay trở lại với chủ đề về dữ liệu khách hàng, ở bài viết phần 1 và phần 2, đã giới thiệu đến các bạn những khái niệm về phân tích dữ liệu khách hàng, loại dữ liệu khách hàng có thể thu thập, và lợi ích, cũng như mục đích của quá trình Customer data analytics. Trong phần 3 lần này, chúng tôi sẽ cung cấp những giải pháp hỗ trợ các công ty khai thác nguồn dữ liệu khách hàng của họ sao cho hiệu quả nhất.

    TỔNG QUAN VỀ CUSTOMER DATA (P.3) GIẢI PHÁP KHAI THÁC CUSTOMER DATA HIỆU QUẢ

  19. Nếu các bạn có theo dõi các bài viết trước của Big Data Uni về Chatbot thì cũng đã biết sự cần thiết và tầm quan trọng của hệ thống trả lời tự động ứng dụng trong mọi lĩnh vực, với mục đích quản lý hiệu quả các hoạt động tạo dựng, duy trì mối quan hệ với khách hàng đồng thời thu hút họ mua sản phẩm và đăng ký sử dụng dịch vụ.

    CÁC CHỈ SỐ KPI ĐÁNH GIÁ CHATBOT

  20. Ở bài viết trước, đã giới thiệu đến các bạn khái niệm về Data management – quản lý dữ liệu – lịch sử ra đời, cũng như các thành phần, quy trình, chức năng có trong Data management. Trở lại với phần 2 “Tầm quan trọng của quản lý dữ liệu” , sẽ đi vào phân tích chi tiết các lợi ích chính, các thách thức mỗi tổ chức phải đối mặt khi triển khai, và liệt kê một số giải pháp thực tiễn sẽ hỗ trợ hiệu quả.

    TẦM QUAN TRỌNG CỦA QUẢN LÝ DỮ LIỆU (DATA MANAGEMENT) (P2)

  21. Dữ liệu lớn có ở rất nhiều tổ chức, nhiều hoạt động xã hội, kinh doanh, khoa học và tiềm ẩn nhiều giá trị to lớn. Việc đó đồng nghĩa với các nhà khoa học phải đau đầu khi đối phó với việc lưu trữ, xử lý khối lượng số liệu khổng lồ và đa dạng về chủng loại dữ liệu.

    Big data với những vấn đề, giải pháp & thách thức

  22. Từ khi có ứng dụng data science, ngành y tế và chăm sóc sức khỏe cũng có những bước nhảy vọt quan trọng. 5 nhóm lĩnh vực data science đã áp dụng thành công những ứng dụng của data science có thể kể đến như Phân tích hình ảnh y khoa, gien và bộ gien, Điều chế thuốc, phân tích và chẩn đoán, ứng dụng phần mềm sức khỏe hay trợ lý sức khỏe tâm lý.

    Ứng dụng Data Science vào lĩnh vực Y tế mang tính đột phá

  23.  

    CÁC PHƯƠNG PHÁP THU THẬP DỮ LIỆU TRONG NGHIÊN CỨU MARKETING

    NI DUNG CHÍNH

    Các phương pháp thu thập dữ liệu trong nghiên cứu marketing

  24. Bối cảnh, nguyên nhân tại sao các công ty ngày nay cần định hướng dữ liệu (Data – driven)

    Nếu các bạn có theo dõi những các bài viết trước đây của thì chúng tôi đã đề cập nhiều về tầm quan trọng của dữ liệu –  được coi là nguồn sống của mọi tổ chức trong thời đại 4.0 – cũng như các xu hướng của Big Data, Data Analytics, và nhu cầu khai thác dữ liệu để đạt được giá trị, lợi ích trong kinh doanh ngày càng được quan tâm hơn.

    CÔNG TY ĐỊNH HƯỚNG DỮ LIỆU (DATA – DRIVEN ENTERPRISE) (PHẦN 1)

  25. Giá trị khách hàng suốt vòng đời – Customer lifetime value

    Một trong những khái niệm mà bất kể chuyên gia tiếp thị marketing hay chủ doanh nghiệp cần để ý là giá trị của khách hàng trong suốt vòng đời của họ. Điều này đặc biệt quan trọng khi đề ra chiến lượt tiếp thị marketing, định vị thương hiệu của mỗi nhãn hàng ( brand).Cụ thể hơn là khi đưa ra quyết định, tính toán về chi phí quảng cáo marketing cho mỗi khách hàng và ngân sách cho các chiến dịch tiếp thị marketing.

    Giá trị suốt vòng đời của khách hàng – Customer lifetime value

ứng dụng quản lý vận tải thông minh

ứng dụng quản lý đội xe, điều tài thông minh

Phần mềm, ứng dụng thông minh dành cho quản lý xe doanh nghiệp, điều xe đi công tác,...

SGO Giải pháp thông minh cho các công ty vận chuyển, logistics thuê ngoài

fintech

banking mobile apps

insurtech

medical tech, health care mobile apps

© Copyright DVMS Co., Ltd. All Rights Reserved.